Ruby:
Symbols and
Object-Oriented Concepts

Co

Lecture 9

ng B The Ohio State Universi

Symbols

Computer Science and Engineering B The Ohio State University

Roughly: unigue & immutable strings
Syntax: prefix with ":"

height

: 'some symbol'

:"#{name}'s crazy idea"

Easy (too easy?) to convert between
symbols and strings
:name. to_ s => "name"

'name'.to sym #=> :name

But symbols are not strings
:name == 'name' #=> false

Operational View

Computer Science and Engineering B The Ohio State University

A symbol is created once, and all uses
refer to that same object (aliases)

Symbols are immutable

Example

[].object id #=> 200
[].object id #=> 220
[].equal? [] #=> false
:world.object id #=> 459528
:world.object id #=> 459528
:world.equal? :world #=> true

Symbols as Hash Key

Literal notation, but note colon location!
colors = {red: 0x£fO00,

green: 0x0fO0,
blue: 0x00f}

[his is just syntactic sugar
B {name: wvalue} Same asS {:name => wvalue}

B The key is a symbol (eg :red)
Pitfalls

colors.red => NoMethodError

colors["red"] #=> nil
colors|[:red] #=> 3840 (ie 0x£f00)

Computer Science and Engineering B The Ohio State University

Keyword Arguments

Computer Science and Engineering B The Ohio State University

Alternative to aositional matching of
arguments with formal parameters

def display(first:, last:)
puts "Hello #{first} #{last}"
end
display first: 'Mork', last: 'Ork'
display last: 'Hawking', first: 'Steven'

Providing a default value makes that
argument optional

def greet(title: 'Dr.', name:)
puts "Hello #{title} #{name}"
end

Benefits: Client code is easier to read,
and flexibility in optional arguments

Classes

Computer Science and Engineering B The Ohio State University

O Classes have methods and variables

class LightBulb # name with CamelCase
def initialize # special method name
@state = false # @ means "instance variable"
end
def on?
@state # implicit return
end
def flip switch! # name with snake case
@state = !@state
end
end

O Instantiation calls initialize method
f = LightBulb.new #=> <LightBulb:0x0000e71c2322

@state=false>
f.on? #=> false

V 1SI b . I . t
Computer Science and Engineering B The Ohio State University

Instance variables are always private
B Private to object, not class

Methods can be private, protected, or public
(default)

class LightBulb
private def inside

end

def access internals(other bulb)
inside # ok
other bulb.inside # no! inside is private

self.inside # no explicit recv'r allowed
end

end

Getters/Setters

Computer Science and Engineering B The Ohio State University

class LightBulb
def initialize(color, state: false)
@color = color # not visible outside object
@state = state # not visible outside object
end
def color
@color
end
def state
@state
end
def state=(wvalue)
@state = wvalue
end
end

Attributes

Computer Science and Engineering B The Ohio State University

class LightBulb

def initialize(color, state: false)
@color = color
@state = state

end

def color
@color

end

attr accessor :state # name is a symbol

end

Attributes

class LightBulb

def initialize(color, state:

@color = color
@state = state
end

attr reader :color

att:_accessor :state

end

Computer Science and Engineering B The Ohio State University

false)

Attributes

Computer Science and Engineering B The Ohio State University

class LightBulb
attr reader :color
attr accessor :state
attr writer :size

def initialize(color, state: false)
@color = color
@state = state
@size = 0
end
end

Classes Are Always Open

Computer Science and Engineering B The Ohio State University

A class can always be extended
class Street

def construction .. end
end

class Street
def repave .. end # Street now has 2 methods
end

Applies to core classes too
class Integer
def log2 of cube # lg(self”3)
(self**3) .to s(2).length - 1
end
end

500.1log2 of cube #=> 26

Classes are Always Open (!)

Comp ate University

Existing methods can be redefined!

When done with system code
(libraries, core ...) called "monkey
patching”

[empting, but... Just Don’t Do It

No Overloading

Computer Science and Engineering B The Ohio State University

Method identified by (symbol) name
B No distinction based on number of arguments
Approximation: default arguments
def initialize (width, height = 10)
Qwidth = width
@height = height

end

Old alternative: trailing options hash
def initialize (width, options)

Modern style: default keyword arguments
def initialize (height: 10, width:)

A Class is an Object Instance too

B The Ohio State Uni

Even classes are objects, created by ‘new
LightBulb = Class.new do #class LightBulb
def initialize
@state = false
end
def on?
@state
end
def flip switch!
@state = !@state
end

end

Instance, Class, Class Instance

class LightBulb
@statel
def initialize
@state2 = ..
@@state3 = ..
end
def bar

end
def self. foo

end
end

#

813

13

813

H I

Computer Science and Engineering B The Ohio State University

class instance var

instance variable
class variable

instance method
sees (@statel2, (@@state3

class method
sees (@statel, (@@state3

Inheritance

Computer Science and Engineering B The Ohio State University

Single inheritance between classes
class LightBulb < Device

end

B Default superclass is Object (which inherits
from BasicObject)

Keyword super to call parent's method
B No args means forward all args
class LightBulb < Device
def electrify(current, wvoltage)
do work
super # with current and voltage
end
end

Modules

Computer Science and Engineering B The Ohio State University

Another container for definitions
module Stockable
MAX = 1000
class Item .. end
def self.inventory .. end # utility fn
def order .. end
end

Cannot, themselves, be instantiated

s = Stockable.new # NoMethodError
i = Stockable::Item.new # ok
Stockable.inventory # ok

Stockable.order # NoMethodError

Modules as Namespace

Computer Science and Engineering B The Ohio State University

Modules create independent namespaces
B cf. packages in Java

Access contents via scoping (::)
Math: :PI => 3.141592653589793
Math::cos 0 #=> 1.0
widget = Stockable::Item.new
X = Stockable: :inventory
Post < ActiveRecord: :Base
BookController < ActionController: :Base

Style: use dot to invoke utility functions

(ie module methods)
Math.cos 0 => 1.0
Stockable.inventory

Modules are Always Open

Computer Science and Engineering B The Ohio State University

O Module contains several related classes
O Style: Each class should be in its own file

O So split module definition
game.rb
module Game
end

game/card.rb
module Game

class Card .. end
end

game/player.rb
module Game

class Player .. end
end

Modules as "Mixins”

Computer Science and Engineering B The Ohio State University

Another container for method deflnltlons
module Stockable
def order .. end
end

A module can be included in a class
class LightBulb < Device
include Stockable, Comparable ..
end

Module's (instance) methods become
(instance) methods of the class
bulb = LightBulb.new
bulb.order # from Stockable
if bulb <= old bulb # from Comparable

Requirements for Mixins

Comp

Mixins often rely on certain aspects of
classes into which they are included
Example: Comparable methods use #<=>
module Comparable
def <(other) .. end
def <=(other) .. end
end

Enumerable methods use #each

Recall layering in SW I/I1? Roughly:
B Class implements kernel methods
B Module implements secondary methods

Software Englneerlng

University

All the good principles of SW I/II apply

Single point of control over change
B Avoid magic numbers

Client view: abstract state, contracts,
iInvariants

Implementer view: concrete rep,
correspondence, invariants

Checkstyle tool: rubocop

Documentation: YARD

B Notation for types: yardoc.org/types.html
@param words Array<String> the lexicon

Summary

Classes as blueprints for objects

B Contain methods and variables

B Public vs private visibility of methods

B Attributes for automatic getters/setters
Metaprogramming

B Classes are objects too

B "Class instance” variables

Single inheritance

Modules are namespaces and mixins

Computer Science and Engineering B The Ohio State Universi

