
Computer Science and Engineering College of Engineering The Ohio State University

HTTP:
Hypertext Transfer Protocol

Lecture 12

Computer Science and Engineering The Ohio State University

HTTP
 Hypertext Transfer Protocol
 History
 Early 90's: developed at CERN, Tim Berners-Lee
 1996: version 1.0
 1999: version 1.1 (ubiquitous today!)
 2015: version 2

 Performance improvements: binary, server push…
 Backwards compatible

 2022: version 3
 Performance improvements, same semantics
w3techs.com/technologies/overview/site_element

 Simple request/response (client/server)
 Client sends request to (web) server
 (Web) server responds
 Protocol itself is stateless

Computer Science and Engineering The Ohio State University

Anatomy of a Request/Response

 An HTTP request/response consists of
1. Method (request) / status (response)
2. Header fields: meta information
3. A blank line
4. Body (sometimes): payload

 The header (parts 1-3) is ASCII text
 Newline is CRLF (typical of IETF protocols)
 Method/status is 1 line
 Each header field is on its own line
 Blank line separates header from body

Computer Science and Engineering The Ohio State University

Protocol: Request, Response

Request

Response

Method
Header field 1
Header field 2

Body

Status
Header field 1
Header field 2
Header field 3

Body

Computer Science and Engineering The Ohio State University

Request Header: Method

 Syntax of first line:
verb path version
 Verb: GET, HEAD, POST, PUT, DELETE,…
 Path: part of URL (path and query)

scheme://FQDN:port/path?query#fragment

 Version: HTTP/1.1, HTTP/2, HTTP/3

 Example:
 For URL

http://www.osu.edu/academics#content

 First line of HTTP request is
GET /academics HTTP/1.1

Computer Science and Engineering The Ohio State University

Request Header: Header Fields
 Each field is on its own line:

name: value

 Examples
Host: www.osu.edu
Accept: text/*,image/apng
Accept-Language: en-US,en;q=0.9
If-Modified-Since: Sat, 11 May 2024
19:43:31 GMT
Content-Length: 349
User-Agent: Mozilla/5.0 (X11; Linux
x86_64) Chrome128.0.0.0 Safari/537.36

 Header names are case insensitive

Computer Science and Engineering The Ohio State University

Some Common Header Fields
 Host

 The only required field
 Q: Why is host field even needed?

 Accept, Accept-Language, Accept-Encoding
 List of browser preferences for response
 MIME types, language locales, transfer encodings
 Priority based on order and q-value weight (0-1)

 User-Agent
 Identifies application making request

 If-Modified-Since
 Send payload only if changed since date
 Date must be GMT

 Content-Length
 Required if request has a body
 Number of bytes in body

 Referer (misspelled in spec)
 Previous web page, ie source of this request

Computer Science and Engineering The Ohio State University

"Nobody knows you're a dog"

Request

GET / HTTP/1.1
Host: www.osu.edu
User-Agent: Mozilla/5.0 (X11; Ubuntu;…etc

Computer Science and Engineering The Ohio State University

"Nobody knows you're a dog"

Request

GET / HTTP/1.1
Host: www.osu.edu
User-Agent: Mozilla/5.0 (X11; Ubuntu;…etc

$ curl -A "Mozilla/5.0" http://www.osu.edu

$ telnet

require 'mechanize'
agent = Mechanize.new
page = agent.get 'http://www.osu.edu'

Computer Science and Engineering The Ohio State University

Demo: HTTP Request with telnet

 Example URL
 http://www.osu.edu/academics

 At console
$ telnet www.osu.edu 80

 Opens connection to port 80, where a web
server is listening

 Send the following HTTP request:
GET /academics HTTP/1.1
Host: www.osu.edu
<blank line>

Computer Science and Engineering The Ohio State University

HTTP Response Anatomy
 Recall, four parts

1. Status (one line)
2. Header fields (separated by newlines)
3. Blank line
4. Body (i.e., payload)

 Parts 1-2 collectively are the header
 Status line syntax:

http-version status-code text
 Examples
HTTP/1.1 200 OK
HTTP/1.1 301 Moved Permanently
HTTP/1.1 404 Not Found

Computer Science and Engineering The Ohio State University

Taxonomy of Status Codes
MeaningCode
Informational1xx
Success2xx
Redirection3xx
Client Error4xx
Server Error5xx

Computer Science and Engineering The Ohio State University

Some Common Status Codes
 200 Success/OK

 All is good!
 Response body is the requested document

 301 (302) Permanent (Temporary) Redirect
 Requested resource is found somewhere else
 301 means please go to new location in the future

 304 Not Modified
 Document hasn’t changed since date/time in If-

Modified-Since field of request
 No response body

 404 Not Found
 Server could not satisfy the request
 It is the client’s fault (design-by-contract?)

 500 Internal Server Error
 Server could not satisfy the request
 It is the server’s fault (design-by-contract?)

Computer Science and Engineering The Ohio State University

Response Header: Header Fields

 Each field on its own line, syntax:
name: value

 Examples
Date: Tue, 17 Sep 2024 17:31:18 GMT
Server: Apache/2.4.6 (Red Hat)
Content-Type: text/html; charset=UTF-8
Content-Encoding: gzip
Content-Length: 333

 Blank line indicates end of headers

Computer Science and Engineering The Ohio State University

Demo: Terminal (telnet)

 Telnet is cumbersome
 Redirects entail another telnet request
telnet www.osu.edu 80
GET /academics HTTP/1.1
Host: www.osu.edu

HTTP/1.1 301 Moved Permanently
Location: …

 Plain-text http is increasingly rare
telnet www.osu.edu 443
GET /academics HTTP/1.1
Host: www.osu.edu

Computer Science and Engineering The Ohio State University

HTTP Traffic Transparency
 Everything is visible to an eavesdropper
 HTTP headers are plain text
 HTTP payload may be binary

 To protect communication, use encryption
 SSL, TLS: protocols to create secure channel
 Initial handshake between client and server
 Subsequent communication is encrypted

 HTTP over secure channel = HTTPS
 Default port: 443

Request

MFKM5DO388HSshF1GfEr
x5PXsJk0hGVtiK8xoNf4

Computer Science and Engineering The Ohio State University

Demo: HTTPS with openssl
 Use openssl instead of telnet
 Negotiates initial handshake with server
 Handles encryption/decryption of traffic

 Example URL https://www.osu.edu/
 At console

$ openssl s_client -connect www.osu.edu:443
 Note connection to port 443 (standard for https)

 Syntax of subsequent request is the same
 Send the following HTTP request:

GET /academics HTTP/1.1
Host: www.osu.edu
<blank line>

Computer Science and Engineering The Ohio State University

Demo: Terminal (curl)

 Better command-line tool: cURL
$ curl –v www.osu.edu/academics

 Handles redirection, chunking, https,
headers, …

$ curl –Li www.osu.edu/academics

 Can explicitly set request headers (-H)
$ curl https://www.osu.edu \

-A "Mozilla/5.0"
-H "accept: text/html"

Computer Science and Engineering The Ohio State University

Demo: Chrome Developer Tools

 Powerful inspection tool for the web
 Kabob > More Tools… > Developer Tools,

then see the Network tab
 One GET results in many requests

http://www.osu.edu/academics#content

 For each request, see:
 Request method, headers
 Response status code, and headers
 Response body (and preview)

 To reproduce a request:
 Right click, Copy > Copy as cURL

Computer Science and Engineering The Ohio State University

Demo: Using Ruby
 Mechanize: A Ruby gem for HTTP

require 'mechanize'
 Create an agent to send requests

agent = Mechanize.new do |a|
a.user_agent_alias = 'Mac Safari'

end
 Use agent to issue a request

page = agent.get 'https://news.osu.edu'
 Follow links, submit forms, etc

h = page.link_with(text: /Top/).click
f = page.forms[0]
f.field_with(name: 'q').value = 'CSE'
s = f.submit

Computer Science and Engineering The Ohio State University

Request Methods

 GET, HEAD
 Request: should be safe (no side effects)
 Request has header only (no body)

 PUT
 Update (or create): should be idempotent

 DELETE
 Delete: should be idempotent

 POST
 Create (or update): changes server state
 Beware re-sending!

 HTTP does not enforce these semantics

Computer Science and Engineering The Ohio State University

HTTP is Stateless
 Every request looks the same
 But maintaining state between requests is

really useful:
 User logs in, then can GET account info
 Shopping cart “remembers” contents

 Solution: Keep a shared secret
 Server's first response contains a unique

session identifier (a long random value)
 Subsequent requests from this client include

this secret value
 Server recognizes the secret value, request

must have come from original client

Computer Science and Engineering The Ohio State University

HTTP Session

Request

Response
Secret: 38afes7a8

Request
id: 38afes7a8

Response

38afes7a8

Store secret

Check id

Request
id: 38afes7a8

Response

Check id

Computer Science and Engineering The Ohio State University

HTTP Cookies
 Popular mechanism for session manag’nt
 Set in response header field

Set-Cookie: session=38afes7a8
 Any name/value is ok
 Options: expiry, require https

 Client then includes cookie(s) in any
subsequent request to that domain

 Sent in request header field:
Cookie: session=38afes7a8

 Cookies also used for
 Tracking/analytics: What path did they take?
 Personalization

Computer Science and Engineering The Ohio State University

Summary

 HTTP: request/response
 Anatomy of request
 Methods: GET, PUT, DELETE, POST
 Headers
 Body: arguments of POST

 Anatomy of response
 Status Codes: 200, 301, 404, etc
 Headers
 Body: payload

 Tools
 Curl, Developer Tools, Mechanize

