
Computer Science and Engineering College of Engineering The Ohio State University

JavaScript:
Coercion and Functions

Lecture 23

Computer Science and Engineering The Ohio State University

Conversion of Primitive Values

booleannumberstring

false"0"0numbers

false"0"-0

true"1"1

false"NaN"NaN

true"Infinity"Infinity

true"-Infinity"-Infinity

true"6.022e+23"6.022e23

Computer Science and Engineering The Ohio State University

Conversion of Primitive Values

booleannumberstring

1"true"trueboolean

0"false"false

false0""strings

true0" "

true1.2"1.2"

true0"0"

trueNaN"one"

Computer Science and Engineering The Ohio State University

Conversion of Primitive Values

booleannumberstring

falseNaN"undefined"undefinedundefined

false0"null"nullnull

Computer Science and Engineering The Ohio State University

Summary of (Simple?) Rules

 How do numbers convert to things?
 Boolean: 0 is false, non-0 is true

(exception: NaN)
 How do strings convert to things?
 Numbers: non-valid syntax give NaN

(exception: empty/blank give 0)
 Boolean: true, only empty string is false

 How does undefined convert to things?
 Number: NaN

 How does null convert to things?
 Number: 0

Computer Science and Engineering The Ohio State University

Easier? Column-Major View
 How do things convert to boolean?
 Empty string is false
 Numbers (+/-)0 and NaN are false
 undefined and null are false

 Aka “falsy” (vs. “truthy”)
 Importance: Boolean contexts

if (pet)… // evaluate pet as a boolean

 Pitfall: &&, || may not result in a boolean
 x || y means x ? x : y (first x converted)

p = "cat" || "dog" //=> p == "cat"
 Old idiom: !!x forces conversion to boolean

p = !!("cat" || "dog") //=> p == true

Computer Science and Engineering The Ohio State University

Easier? Column-Major View

 How do things convert to Numbers?
 Empty (and whitespace) string is 0
 Non-numeric strings are NaN
 undefined is NaN
 null is 0

 Importance: Used in == evaluation

Computer Science and Engineering The Ohio State University

== Evaluation is… Different
 When types do not match, coerce:
 null & undefined (only) equal each other
 Strings & booleans converted to numbers

"1.0" == true && "" == false
" " == false // but " " is truthy!

 Pitfall: NaN is not equal to NaN
 When one operand is an object:
 Convert via valueOf (fall back toString)
 Result then compared with usual == rules
 Note: no coercion when both operands are

references (== means reference equality)
 Sanity:
 Use === since it never coerces

Computer Science and Engineering The Ohio State University

Your Turn

Evaluate: True or false?

true == '1'

'false' == false

0 == '0'

0 == ''

NaN == NaN

Computer Science and Engineering The Ohio State University

Surprising Consequences
false == 'false' //=>
false == '0' //=>
!!'0' //=>
('0' == 0) && (0 == '') &&

('0' != '') //=>
(NaN == true) || (NaN == false)

//=>
!!NaN //=>
(NaN != 0) && (!!NaN == !!0)

//=>
 dorey.github.io/JavaScript-Equality-Table

Computer Science and Engineering The Ohio State University

Functions are People too
 Named functions: declaration & use

function foo(a, b) { … }
foo("hi", 3);

 Anonymous functions
function(a, b) { … }
// how is such a thing invoked?

 Functions are objects (first-class citizens)
 They can be assigned to variables!

let foo = function(a, b) {…};
foo("hi", 3);
let bar = foo; // cf. let bar = foo();
bar("world", 17);

Computer Science and Engineering The Ohio State University

Functions are Objects

10

12

2.45

centerX

centerY

radius

return Math.PI *
this.radius *
this.radius

area

this.centerX = x;
this.centerY = y;
... Etc ...

Circle

Computer Science and Engineering The Ohio State University

Functions Can Be Arguments
function apply(f, a) {
return f(a); // f is a function!

}

function square(i) {
return i * i;

}

square(3); //=> 9
apply(square, 5); //=> 25
apply(square, 12); //=> 144

Computer Science and Engineering The Ohio State University

Summary

 Truthy, falsey, and friends
 Type coercion is everywhere
 Coerce to boolean in conditionals
 Coerce to number for ==

 Functions as first-class citizens
 Can be passed as arguments
 Can be returned as return values!
 Closure: carry their context

