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Conversion of Primitive Values

booleannumberstring

false"0"0numbers

false"0"-0

true"1"1

false"NaN"NaN

true"Infinity"Infinity

true"-Infinity"-Infinity

true"6.022e+23"6.022e23



Computer Science and Engineering   The Ohio State University

Conversion of Primitive Values

booleannumberstring

1"true"trueboolean

0"false"false

false0""strings

true0"  "

true1.2"1.2"

true0"0"

trueNaN"one"
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Conversion of Primitive Values

booleannumberstring

falseNaN"undefined"undefinedundefined

false0"null"nullnull
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Summary of (Simple?) Rules

 How do numbers convert to things?
 Boolean: 0 is false, non-0 is true

(exception: NaN)
 How do strings convert to things?
 Numbers: non-valid syntax give NaN

(exception: empty/blank give 0)
 Boolean: true, only empty string is false

 How does undefined convert to things?
 Number: NaN

 How does null convert to things?
 Number: 0
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Easier? Column-Major View
 How do things convert to boolean?
 Empty string is false
 Numbers (+/-)0 and NaN are false
 undefined and null are false

 Aka “falsy” (vs. “truthy”)
 Importance: Boolean contexts

if (pet)… // evaluate pet as a boolean

 Pitfall: &&, || may not result in a boolean
 x || y means x ? x : y (first x converted)

p = "cat" || "dog"   //=> p == "cat"
 Old idiom: !!x forces conversion to boolean

p = !!("cat" || "dog") //=> p == true
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Easier? Column-Major View

 How do things convert to Numbers?
 Empty (and whitespace) string is 0
 Non-numeric strings are NaN
 undefined is NaN
 null is 0

 Importance: Used in == evaluation
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== Evaluation is… Different
 When types do not match, coerce:
 null & undefined (only) equal each other
 Strings & booleans converted to numbers

"1.0" == true && "" == false
"   " == false // but "  " is truthy!

 Pitfall: NaN is not equal to NaN
 When one operand is an object:
 Convert via valueOf (fall back toString)
 Result then compared with usual == rules
 Note: no coercion when both operands are 

references (== means reference equality)
 Sanity:
 Use === since it never coerces
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Your Turn

Evaluate: True or false?

true == '1'

'false' == false

0 == '0'

0 == ''

NaN == NaN
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Surprising Consequences
false == 'false'    //=>  
false == '0'        //=>  
!!'0'               //=>  
('0' == 0) && (0 == '') &&

('0' != '') //=>  
(NaN == true) || (NaN == false)

//=>  
!!NaN               //=>  
(NaN != 0) && (!!NaN == !!0)

//=>  
 dorey.github.io/JavaScript-Equality-Table
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Functions are People too
 Named functions: declaration & use

function foo(a, b) { … }
foo("hi", 3);

 Anonymous functions
function(a, b) { … }
// how is such a thing invoked? 

 Functions are objects (first-class citizens)
 They can be assigned to variables!

let foo = function(a, b) {…};
foo("hi", 3);
let bar = foo;  // cf. let bar = foo();
bar("world", 17);
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Functions are Objects

10

12

2.45

centerX

centerY

radius

return Math.PI * 
this.radius * 
this.radius

area

this.centerX = x;
this.centerY = y;
... Etc ...

Circle
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Functions Can Be Arguments
function apply(f, a) { 
return f(a); // f is a function!

} 

function square(i) { 
return i * i; 

} 

square(3);         //=> 9
apply(square, 5); //=> 25
apply(square, 12); //=> 144
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Summary

 Truthy, falsey, and friends
 Type coercion is everywhere
 Coerce to boolean in conditionals
 Coerce to number for ==

 Functions as first-class citizens
 Can be passed as arguments
 Can be returned as return values!
 Closure: carry their context


