
Computer Science and Engineering College of Engineering The Ohio State University

Rails:
Models

Lecture 28

Computer Science and Engineering The Ohio State University

Rails Overview

Computer Science and Engineering The Ohio State University

Architecture: Desktop App

User Interface

Application

Data

Graphical events
(mouse moves,
button pushed)

Processing,
Calculating

Persistence,
Transactions,
Triggers

Computer Science and Engineering The Ohio State University

Model-View-Controller Pattern

 Model
 The data (i.e. state)
 Methods for accessing and modifying state

 View
 Renders contents of model for user
 When model changes, view must be

updated
 Controller
 Translates user actions (i.e. interactions

with view) into operations on the model
 Example user actions: button clicks, menu

selections

Computer Science and Engineering The Ohio State University

Basic Interactions in MVC

Model

Controller

View

Input

Output

“change data”

“change
display”

“user
action”

“new state”

Computer Science and Engineering The Ohio State University

Basic Web App Skeleton: 3-Tier

User Interface

Application

Data

http HTML, CSS, Javascript

SQL

Computer Science and Engineering The Ohio State University

MVC in a Basic Web Application

 Model
 Database (table with rows)
 Classes that wrap database operations

(class with instances)
 View
 HTML (+ CSS, JavaScript) files rendered

by client's browser
 Skeleton files used by server to generate

these HTML files
 Controller
 Receives HTTP requests via web server
 Orchestrates activity (model and view)

Computer Science and Engineering The Ohio State University

MVC with Rails

Computer Science and Engineering The Ohio State University

MVC with Rails

Computer Science and Engineering The Ohio State University

Directory Structure of Rails
depot/
..../app
......../controllers
......../helpers
......../models
......../views
............../layouts
..../bin
..../config
..../db
..../lib
..../log
..../public
..../storage
..../test
..../tmp
..../vendor
....Gemfile
....Rakefile
....README.md

Computer Science and Engineering The Ohio State University

"Convention Over Configuration"

 Use naming & location conventions to
wire components together implicitly

 Explicit routing too, based on names
and pattern matching

 Contrast with:
 Configuration files (e.g., XML)
 Configuration code (e.g., Swing register

listener)
 Configuration tools (e.g., IDEs to connect

GUI widgets to code snippets)

Computer Science and Engineering The Ohio State University

Wiring Parts Together in Rails
 Example: Event Controller wiring
 HTTP GET request for URL /say/hello gets

routed to controller:
 Class called SayController
 File say_controller.rb in app/controllers
 Method hello

 Example: Controller View wiring
 HTTP response formed from:

 File app/views/say/hello.html.erb
 Example: Model Database wiring
 Class Order maps to database table "orders"
 Attributes of Order map to columns of table
 Instances of Order map to a rows of table

Computer Science and Engineering The Ohio State University

Models in Rails Architecture

Computer Science and Engineering The Ohio State University

Models in Rails Architecture

Computer Science and Engineering The Ohio State University

Mapping Tables to Objects

 General strategy for OO languages
 Table in database -- a class
 Table columns -- attributes of the class
 Table rows -- instances of class (objects)

 Application works with database using
ordinary language syntax
 Class methods for finding row(s) in table

 Example: Java POJOs, Rails models

Computer Science and Engineering The Ohio State University

Database Tables

 A database is a collection of tables
 Naming convention: Table names plural

 Each table has a list of columns
 Each column has a name and a type
 A table has a list of rows

buckid
(integer)

lname
(string)

fname
(string)

22352022PantaniMarco
334432CarneraPrimo
34822039Cher

students

Computer Science and Engineering The Ohio State University

Models
 Programmatic way for application to

interact with database
 Model = a Ruby class
 Extends ApplicationRecord
 Found in app/models

 Each class corresponds to a table
 Note: Models are singular (tables are plural)
 Includes attributes corresponding to columns

implicitly
class Post < ApplicationRecord

attr_accessible :author,:title,:cont
end

Computer Science and Engineering The Ohio State University

Class Methods for Models
 Create a new instance with new

p1 = Post.new
p2 = Post.new author: 'Xi', title: 'Hola'
 Warning: this only creates the model (object)

it does not modify the database
 Create instance and add it to database

p3 = Post.create author: 'Zippy'
 Retrieve particular row(s) from table

p = Post.find 4 # search by id
p = Post.find_by author: 'Xi'
s = Student.find_by buckid: 543333
blog = Post.all
post = Post.first
post = Post.last

Computer Science and Engineering The Ohio State University

Instance Methods for Models
 To save a model (object) as a row in the

database
p = Post.new author: 'Xi'
p.save # commits change to database

 Read/write attributes like an ordinary
Ruby class

p = Post.find_by author: 'Xi'
p.title #=> nil
p.title = 'A Successful Project'
p.save # don't forget to save!

 To delete a row from the table
p.destroy # no save needed

Computer Science and Engineering The Ohio State University

Directory Structure of Rails
depot/
..../app
......../controllers
......../helpers
......../models
......../views
............../layouts
..../bin
..../config
..../db
..../lib
..../log
..../public
..../storage
..../test
..../tmp
..../vendor
....Gemfile
....Rakefile
....README.md

Computer Science and Engineering The Ohio State University

A Bit of Configuration
 Which database to use?
 SQLite is the easiest (no setup!)
 MySQL and PostgreSQL have better performance

 Different environments: development, test,
production
 Default (for rake command) is development

 See config/database.yml
default: &default

adapter: sqlite3
pool: <%= ENV.fetch("RAILS_MAX_THREADS")

{5} %>
timeout: 5000

development:
<<: *default
database: db/development.sqlite3

Computer Science and Engineering The Ohio State University

Database Column Types

MySQLPostgresqlSQLite
blobbyteablob
tinyint(1)booleanboolean
datedatedate
datetimetimestampdatetime
decimaldecimaldecimal
floatfloatfloat
int(11)integerinteger
varchar(255)character

varying
varchar(255)

texttexttext
timetimedatetime
datetimetimestampdatetime

Computer Science and Engineering The Ohio State University

Table Constraints

 Invariants on table entries beyond
type information
 “lname is not null”
 “buckid is unique”

 Often useful to have a unique identifier
for each row (a primary key)
 Easy: Include an extra (integer) column
 Database responsible for assigning this

value every time a row is added
 No way to change this value after creation

Computer Science and Engineering The Ohio State University

Primary Key With Autoincrement

buckid
(integer)

lname
(string)

fname
(string)

id
(key)

22352022PantaniMarco1
334432CarneraPrimo3
34822039Cher4

students

Computer Science and Engineering The Ohio State University

Linking Tables
 Different tables can be related to each

other
 “Each student has exactly 1 major”
 “Each student can own 1 (or more) vehicles”

 Keys are used to encode this relationship
 Include a column in table X containing keys

from table Y (foreign keys)
 For examples:

 Students table includes a column identifying a
student's major

 Vehicles table includes a column identifying a
(student) owner

 Association is an invariant between tables

Computer Science and Engineering The Ohio State University

Association: Students & Vehicles

major
(foreign key)

buckid
(integer)

lname
(string)

fname
(string)

id
(key)

322352022PantaniMarco1
3334432CarneraPrimo3
334822039Cher4

students

license
(string)

owner
(foreign key)

id
(key)

K3F 443L11
F8L 220J42
GOHBUX46

vehicles

Computer Science and Engineering The Ohio State University

Associations

major
(for. key)

id
(key)

31
33
34

owner
(for. key)

id
(key)

11
42
46

id
(key)
2
3
5
6
7

studentsvehicles programs

Computer Science and Engineering The Ohio State University

Schema

 Definition of table structure
 Table name
 Column names and types
 Constraints

 Usually database manager-specific
 See db/schema.rb for Ruby-based

schema description
 Allows independence from particular DB

manager
 Schema is versioned by timestamp (really

by migration…)

Computer Science and Engineering The Ohio State University

Example schema.rb
ActiveRecord::Schema.define(version:

2023_03_19_144259) do

create_table "students", force: :cascade
do |t|

t.string "fname"
t.string "lname"
t.integer "buckid"
t.datetime "created_at", null: false
t.datetime "updated_at", null: false

end

end

Computer Science and Engineering The Ohio State University

Migrations

 Q. Who writes schema.rb?
 A. It is generated!
 Golden rule: Never edit schema.rb directly
 Instead, write a migration

 A migration is Ruby code (a class) that
represents a change in schema
 Create new tables (including column

names and column types)
 Modify existing tables (adding/removing

columns, or changing associations)
 Delete (“drop”) existing tables

Computer Science and Engineering The Ohio State University

Migration Classes
 See db/migrate
 Filename consists of
 Timestamp (UTC) of creation
 Class name (descriptive of delta)
 Example: class CreatePosts in

20230319145307_create_posts.rb
 Consequence: Migrations are run in a

consistent order
 Deltas do not commute, so order is important

 Class extends ActiveRecord::Migration
 Contains method change
 This method invoked by rails db:migrate

Computer Science and Engineering The Ohio State University

Example Migration Class
class CreatePosts < ActiveRecord::Migration
def change
create_table :posts do |t|
t.string :name
t.string :title
t.text :content

t.timestamps
end

end
end

Computer Science and Engineering The Ohio State University

Result of Running This Migration

:updated_at
(datetime)

:created_at
(datetime)

:content
(text)

:title
(string)

:name
(string)

:id
(key)

:posts

Computer Science and Engineering The Ohio State University

Column Type Mappings

MySQLPostgresqlSQLiteRubyMigration
blobbyteablobString:binary
tinyint(1)booleanbooleanBoolean:boolean
datedatedateDate:date
datetimetimestampdatetimeTime:datetime
decimaldecimaldecimalBigDecimal:decimal
floatfloatfloatFloat:float
int(11)integerintegerInteger:integer
varchar(255)character

varying
varchar(255)String:string

texttexttextString:text
timetimedatetimeTime:time
datetimetimestampdatetimeTime:timestamp

Computer Science and Engineering The Ohio State University

Schema Deltas In Migrations
 In addition to creating tables, the change

method can also change existing tables
 Modify columns of an existing table

add_column, remove_column, rename_column,
change_column

 Modify and delete tables
change_table, drop_table

 Example: xxx_add_author_to_posts.rb
class AddAuthorToPosts <

ActiveRecord::Migration
def change
add_column :posts, :author, :string

end
end

Computer Science and Engineering The Ohio State University

Migrations as History
 Change defined by migration can be undone
 Migrations give a linear history of deltas
 Schema is the result of applying them (in order)

 Can move forward/backward in history
 Create database only (no schema) defined in

config/database.yml
$ rails db:create

 Update schema.rb (compare its version number to
list of migrations) and apply to database
$ rails db:migrate

 Rollback schema.rb to earlier point in history
$ rails db:rollback

 Load schema defined in db/schema.rb
$ rails db:schema:load

Computer Science and Engineering The Ohio State University

Schemas, Migrations, Models

schema.rb

migrations models

database.yml

database

db:create

db:schema:load

db:migrate

db:schema:dump

Computer Science and Engineering The Ohio State University

Migrations vs Schema
 Golden rule: Never edit schema.rb
 It is regenerated every time you do a

migration
 Every change in schema means writing a

migration
 Commit schema.rb to version control
 Deployment in fresh environment means

loading schema, not reliving the full migration
history

 Commit migrations to version control
 Once a migration has been shared, to undo it

you should create a new migration (preserve
the linear history)

Computer Science and Engineering The Ohio State University

Summary

 Databases: Tables, columns, rows
 Structure defined in a schema
 Rails uses Ruby code to generate schema

 Models
 Ruby classes that mirror database tables
 Class names from table (singular vs

plural)
 Attributes from columns

 Migrations
 Ruby code describing change to schema
 Syntax look declarative

