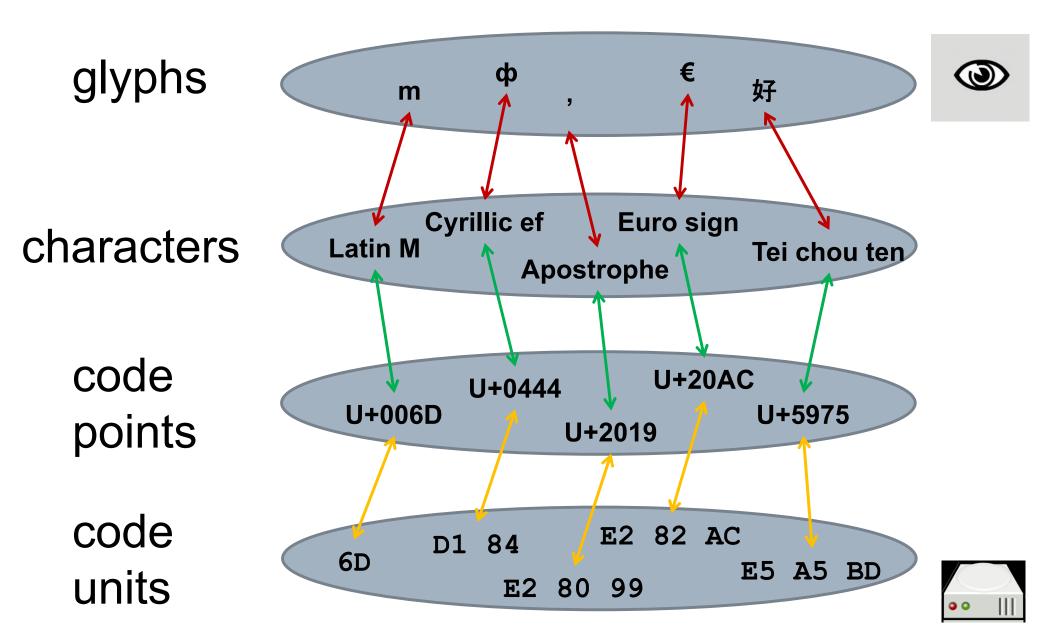
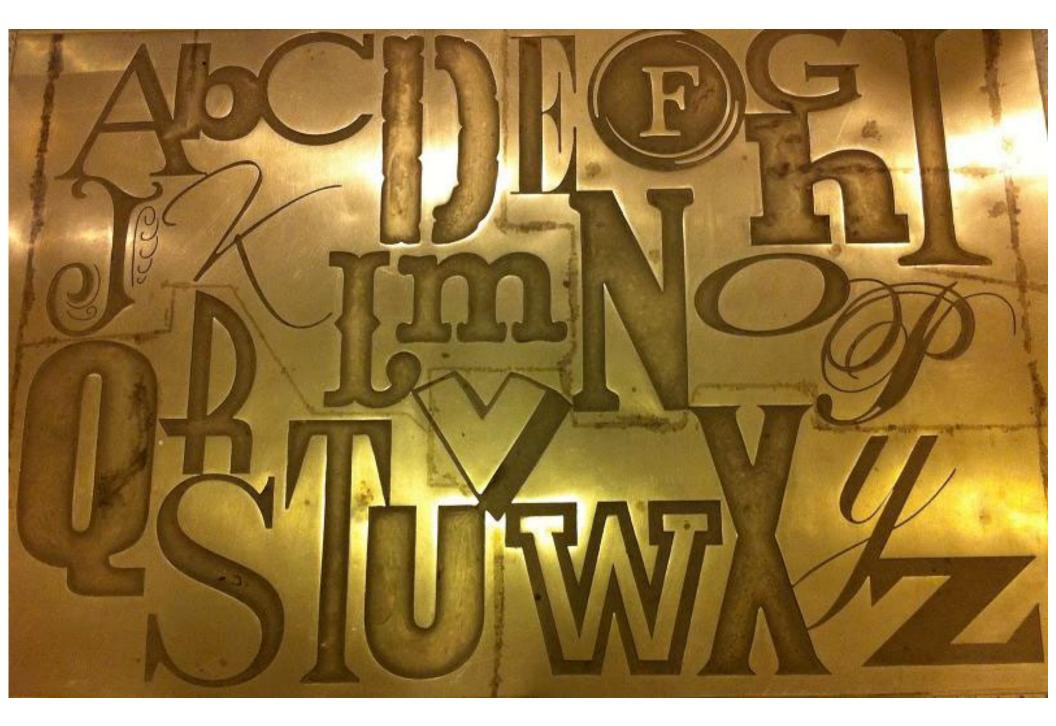
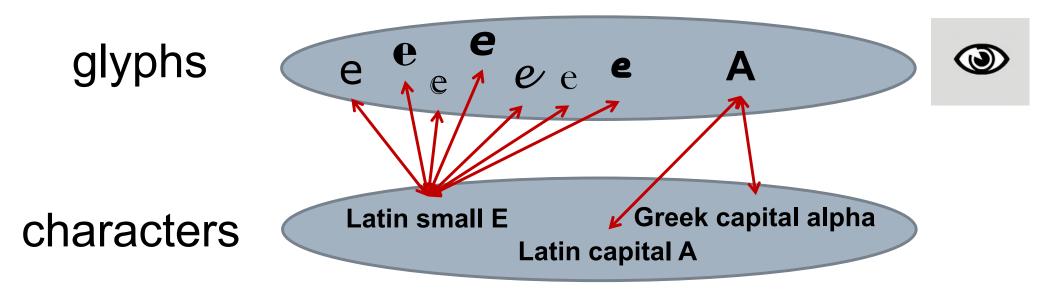

Unicode and UTF-8

Computer Science and Engineering College of Engineering The Ohio State University


Lecture 33


A standard for the discrete representation of written text


The Big Picture

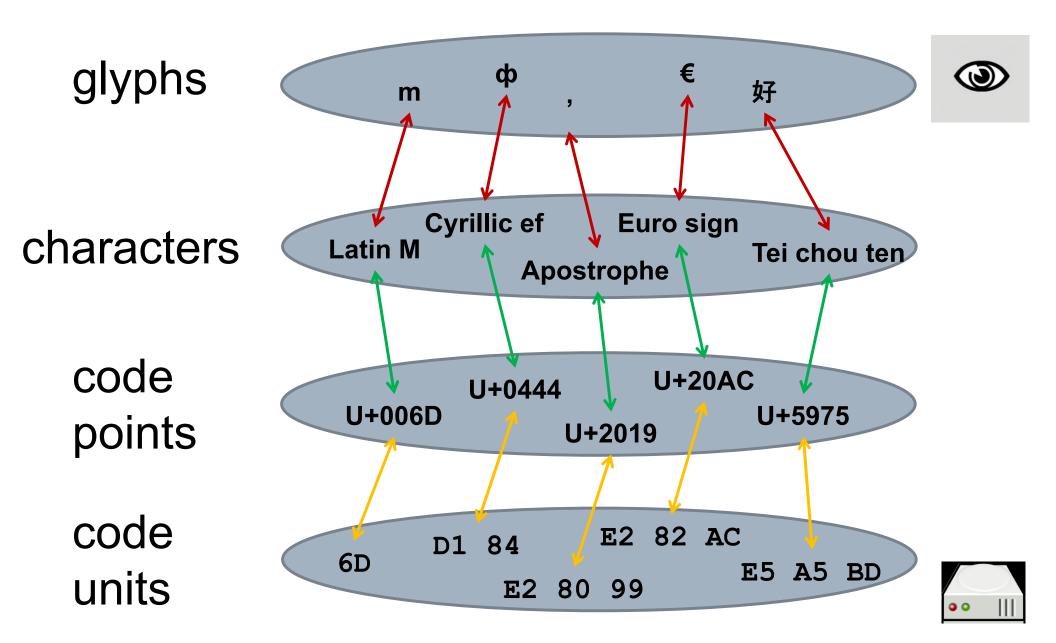

The Big Picture

Glyphs vs Characters

Text: A Sequence of Glyphs

- Glyph: "An individual mark on a written medium that contributes to the meaning of what is written."
 - See foyer floor in main library
- One character can have different glyphs
 - Example: Latin Small E could be e, e, e, e, e, ...
- □ One *glyph* can be different *characters*
 - 0 is both Digit Zero and (capital) Latin 0
 - A is both (capital) Latin A and Greek Alpha
- One unit of text can consist of *multiple* glyphs
 - An accented letter (é) is two glyphs
 - The ligature of f+i (fi) is two glyphs

Computer Science and Engineering
The Ohio State University


Visual homograph: Two different characters that look the same

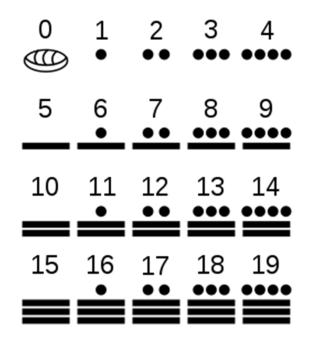
Would you click here: <u>www.paypal.com</u> ?

Security Issue

- Visual homograph: Two different characters that look the same
 - Would you click here: <u>www.paypal.com</u> ?
 - Oops! The second `a' is actually CYRILLIC SMALL LETTER A
 - This site successfully registered in 2005
- Other examples: combining characters
 - \tilde{n} = LATIN SMALL LETTER N WITH TILDE
 - $\tilde{n} = LATIN SMALL LETTER N + COMBINING TILDE$
- □ "Solution"
 - Heuristics that warn users when languages are mixed and homographs are possible

Unicode: Characters, Code Points

Unicode Code Points


- Each character is assigned a unique code point
- A code point is defined by an integer value, and is given a name
 - one hundred and nine (109, or 0x6d)
 - LATIN SMALL LETTER M
- □ Convention: Write code points as U+hex
 - Example: U+006D
- □ As of Sept '24, v16.0 (see unicode.org):
 - Contains 154,998 code points <u>emoji-versions.html</u>
 - Covers 168 scripts (and counting...) <u>unicode.org/charts/</u>

Example Recent Addition (v11)

Computer Science and Engineering
The Ohio State University

Mayan numerals

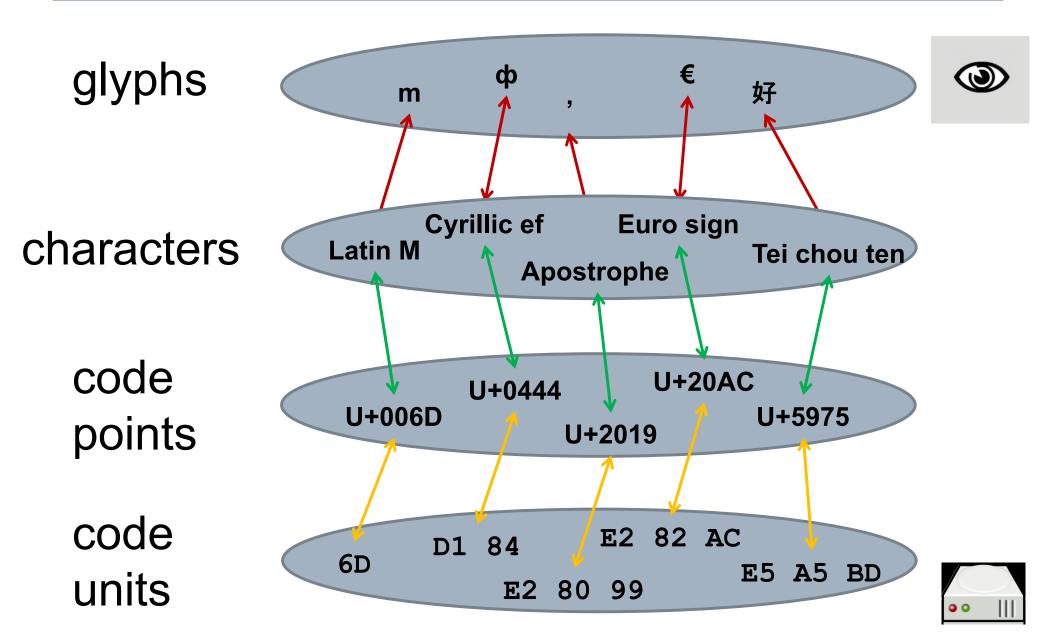
1D2E0 🐵	MAYAN NUMERAL ZERO
1D2E1 .	MAYAN NUMERAL ONE
1D2E2	MAYAN NUMERAL TWO
1D2E3	MAYAN NUMERAL THREE
1D2E4	MAYAN NUMERAL FOUR
1D2E5	MAYAN NUMERAL FIVE
1D2E6 💶	MAYAN NUMERAL SIX
1D2E7 💶	MAYAN NUMERAL SEVEN
1D2E8 •••	MAYAN NUMERAL EIGHT
1D2E9 ••••	MAYAN NUMERAL NINE
1D2EA 📥	MAYAN NUMERAL TEN
1D2EB 📥	MAYAN NUMERAL ELEVEN
1D2EC 👥	MAYAN NUMERAL TWELVE
1D2ED 😐	MAYAN NUMERAL THIRTEEN
1D2EE 🎫	MAYAN NUMERAL FOURTEEN
1D2EF 💻	MAYAN NUMERAL FIFTEEN
1D2F0 📥	MAYAN NUMERAL SIXTEEN
1D2F1 🚞	MAYAN NUMERAL SEVENTEEN
1D2F2 🗮	MAYAN NUMERAL EIGHTEEN
1D2F3 🎬	MAYAN NUMERAL NINETEEN

Organization

Computer Science and Engineering
The Ohio State University

Code points are grouped into categories
Basic Latin Cyrillic Arabic Cherokee

- Basic Latin, Cyrillic, Arabic, Cherokee, Currency, Mathematical Operators, ...
- \Box Unicode allows for 17 x 2¹⁶ code points
 - 0 to 1,114,111 (*i.e.*, > 1 million)
 - U+0000 to U+10FFFF
- **\Box** Each block of 2¹⁶ code points is a *plane*
 - U+nnnnn, same green ==> same plane
 - ~64,000 code points per plane
- Plane 0 is the basic multilingual plane (BMP)
 - Has (practically) everything you could need
 - Convention: code points in BMP written U+nnnn (ie 4 digits, leading 0's if needed)
 - Others code points written without leading 0's


Basic Multilingual Plane

00	01	02	03	04	0.5	06	07	08	09	0A	0в	0C	0D	0e	0f		Latin scripts and symbols
10	11	12	13	14	15	<mark>1</mark> 6	17	18	19	17	1E	1C	1E	1E	1F		Linguistic scripts
20	21	22	23	24	25	26	27	28	29	2A	2в	2C	2D	2E	2F		Other European scripts
30	31	32	33	34	35	36	37	38	39	ЗA	3в	3C	ЗD	ЗE	ЗF	-	Middle Eastern and Southwest Asian scripts
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F		African scripts
50	51	52	53	54	55	56	57	58	59	5A	5в	5C	5D	5E	5F		South Asian scripts
60	61	62	63	64	65	66	67	68	69	6A	6в	6C	6D	6E	6F		Southeast Asian scripts
70	71	72	73	74	75	76	77	78	79	7A	7в	7C	7D	7E	7F		East Asian scripts
																	Unified CJK Han
80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F		Canadian Aboriginal scripts
90	91	92	93	94	95	96	97	98	99	9A	9в	9C	9D	9E	9F		Symbols
AO	A1	A2	A3	A4	A5	<mark>A</mark> 5	A7	A 8	7 .9	AA	AB	AC	AD	AE	AF		Diacritics
вО	в1	в2	в3	в4	в5	в6	в7	в8	в9	ва	вв	BC	BD	BE	BF		UTF-16 surrogates and private use
C0	С1	C2	C3	C4	C5	C6	C7	C8	C9	CA	СВ	сс	CD	CE	CF		Miscellaneous characters
DO	D1	D2	D3	D4	D5	D6	D7	D8	D9	DA	DB	DC	DD	DE	DF		Unallocated code points
ЕO	E1	E2	E3	E4	E5	E6	E7	E8	E9	EA	EB	EC	ED	EE	EF		
F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	FA	FB	FC	FD	FE	FF		

Supplemental Plane (plane 1)

100	101	10 <mark>2</mark>	<mark>1</mark> 03	<mark>104</mark>	105	106	107	<mark>10</mark> 8	109	1 <mark>0</mark> A	10B	10 <mark>C</mark>	10D	10 <mark>E</mark>	10F		Non-Latin European scripts
110	111	112	113	114	115	116	117	118	119	11A	11B	11C	11D	11E	11F		Cuneiform
120	121	122	123	124	125	126	127	128	129	12A	12B	12C	12D	12E	12 <mark>F</mark>		American scripts
130	131	132	133	134	135	136	137	138	139	13A	13B	13C	13D	13E	13F		African scripts
140	141	142	143	144	145	146	147	148	149	14A	14B	14C	14D	14E	14F		Latin script
																	Middle Eastern and Southwest Asian scripts
150	151	152	153	154	155	156	157	158	159	15A	15B	15C	15D	15E	15F	_	
160	161	162	163	164	165	166	167	168	169	16A	16B	16C	16D	16E	16F		Hieroglyphs South and
170	171	172	173	174	175	176	177	178	179	17A	17B	17C	17D	17E	17F		Central Asian scripts
180	181	182	183	184	185	186	187	188	189	18A	18B	18C	18D	18E	18F		Southeast Asian scripts
190	191	192	193	194	195	196	197	198	199	19A	19B	19C	19D	19E	19F		Symbols
1A0	1A1	1A2	1A3	1A4	1A5	1A6	1A7	1A8	1A9	1AA	1AB	1AC	1AD	1AE	1AF		Indonesian and Oceanic scripts
1B0	1B1	1B2	1B3	1B4	1B5	1B6	1B7	1B8	1B9	1BA	1BB	1BC	1BD	1BE	1BF		East Asian scripts
1C0	1C1	1C2	1C3	1C4	1C5	1C6	1C7	1C8	1C9	1CA	1CB	1CC	1CD	1CE	1CF		Notational systems
1D0	1D1	1D2	1D3	1D4	1D5	1D6	1D7	1D8	1D9	1DA	1DB	1DC	1DD	1DE	1DF		Unallocated code points
1E0	1E1	1E2	1E3	1E4	1E5	1E6	1E7	1E8	1E9	1EA	1EB	1EC	1ED	1EE	1EF	As	of Unicode 14.0
1F0	1F1	1F2	1F3	1F4	1F5	1F6	1F7	1F8	1F9	1FA	1FB	1FC	1FD	1FE	1FF		

UTF-8: Code Points & Octets

UTF-8

- Encodes each code point (integer) as a sequence of bytes (octets)
- Variable length
 - Some code points require 1 octet
 - Others require 2, 3, or 4
- Consequence: Can not infer number of characters from size of file!
- □ No endian-ness: a *sequence* of octets D0 BF D1 80 D0 B8 D0 B2 D0 B5 D1 82...
- Other encodings exist!
 - Eg UTF-16 uses 2 bytes per code point (more general term: code unit)

UTF-8 Encoding Recipe

Computer Science and Engineering
The Ohio State University

1-byte encodings

- First bit is 0
- Example: 0110 1101 (encodes U+006D)
- 2-byte encodings
 - First byte starts with **110**...
 - Second byte starts with 10...
 - **Example:110**1 0000 **10**11 1111
 - □ Payload: 1101 0000 1011 1111 = 100 0011 1111
 - 0x043F

□ Code point: U+043F *i.e.* п, Cyrillic small letter pe

UTF-8 Encoding Recipe

- Generalization: An encoding of length k:
 - First byte starts with k 1's, then a 0
 - Example 1110 0110 ==> first byte of a 3-byte encoding
 - Subsequent k-1 bytes each start with 10
 - Remaining bits are the payload
- Example: E2 82 AC 11100010 10000010 10101100
 - Payload: 0x20AC (*i.e.*, U+20AC, €)
- Consequence: Stream is selfsynchronizing
 - Losing a byte affects only one character

UTF-8 Encoding Summary

Computer Science and Engineering
The Ohio State University

Unicode	Byte1	Byte2	Byte3	Byte4	example
U+0000-U+007F	0xxxxxxx				$\begin{array}{l} \text{'$' U+0024} \\ \rightarrow 0\underline{010}0100 \\ \rightarrow 0x24 \end{array}$
U+0080-U+07FF	110yyyxx	10xxxxxx			'¢' U+00 <u>A</u> 2 → 110000 <u>10</u> , 10 <u>10</u> 0010 → 0xC2, 0xA2
U+0800-U+FFFF	1110уууу	10уууухх	10xxxxxx		<pre></pre>
U+10000-U+10FFFF	11110 <i>zzz</i>	10 <i>zzyyyy</i>	10ууууухх	10xxxxxx	'辍' U+ <u>024B6</u> 2 → 11110 <u>0</u> 00,1010 <u>0100</u> ,101011 <u>01</u> ,10 <u>10</u> 0010 → 0xF0,0xA4,0xAD,0xA2

(from wikipedia)

Your Turn

Computer Science and Engineering
The Ohio State University

For the following UTF-8 encoding, what is the corresponding code point(s)?
 F0 A4 AD A2

For the following Unicode code point, what is its UTF-8 encoding? U+20AC

Security Issue

Computer Science and Engineering
The Ohio State University

Not all octet sequences are legal encodings
 "overlong" encodings are illegal

- example: C0 AF
 = **110**0 0000 **10**10 1111
 = U+002F (encoding should be 2F)
- □ Classic security bug (IIS 2001)
 - Should reject URL requests with "../.."
 Looked for 2E 2E 2F 2E 2E (in encoding)
 - Accepted "..%c0%af.." (doesn't contain x2F)
 2E 2E CO AF 2E 2E is ok to allow through
 - After accepting, server then decoded D 2E 2E CO AF 2E 2E decoded into "../.."
- □ Moral: String is a sequence of *code units*
 - But we care about *code points*

Other (Older) Encodings

- □ In the beginning...
- Character sets were small
 - ASCII: only 128 characters (ie 2⁷)
 - 1 byte/character, leading bit always 0

ASCII: 128 Codes

Computer Science and Engineering
The Ohio State University

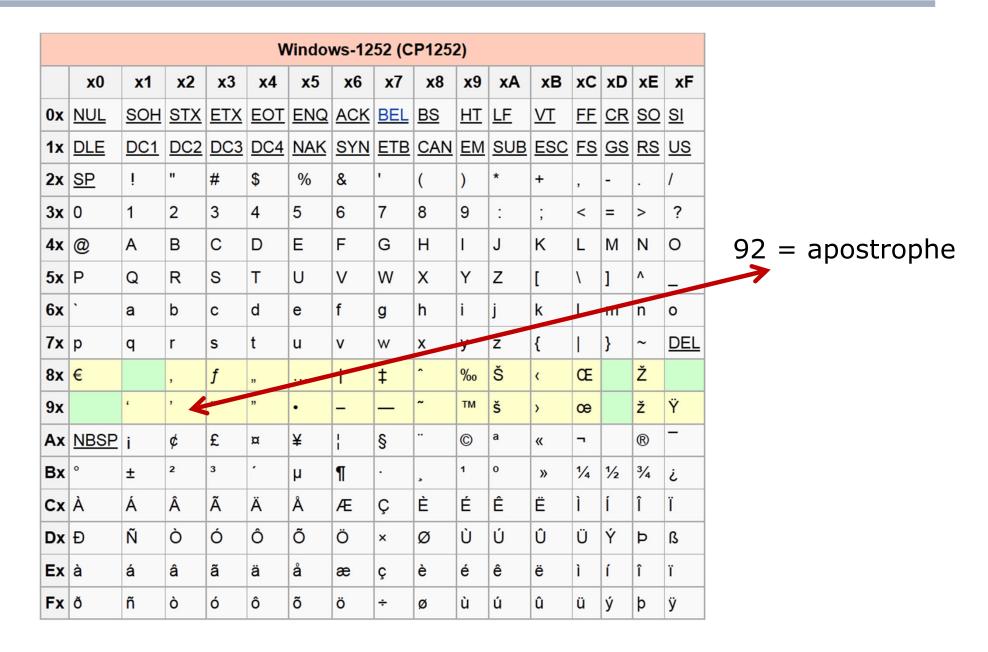
	ASCII Code Chart															
1	<u>10112344516178918181C1D1E1F</u>															
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	S0	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2		!		#	\$	è,	&	•	()	*	+	,	-	•	/
3	Θ	1	2	3	4	5	6	7	8	9	:	;	۷	=	>	?
4	0	Α	В	С	D	E	F	G	H	I	J	K	L	М	Ν	0
5	Ρ	Q	R	S	Т	U	۷	W	X	Y	Z	[\]	^	_
6	`	а	b	с	d	е	f	g	h	i	j	k	ι	m	n	0
7	р	q	r	S	t	u	v	W	x	У	z	{		<u>}</u>	~	DEL

6D = Latin small m

Other (Older) Encodings

Computer Science and Engineering
The Ohio State University

- □ In the beginning...
- Character sets were small
 - ASCII: only 128 characters (ie 2⁷)
 - 1 byte/character, leading bit always 0
- □ Globalization means more characters...
 - But 1 byte/character seems fundamental


□ Solutions:

- Use that leading bit!
 - Text data now looks just like binary data
 - □ 256 characters
- Use more than 1 encoding!
 - Must specify data + encoding used
 - Each encoding gives 256 characters

ISO-8859 family (eg -1 Latin)

	-0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-A	-B	-C	-D	-E	-F		
0-		0001	0002	0003	0004	0005	0006	0007	0008	0009	000A	0008	000C	000D	ODDE	000F		
1-	0010	0011	0012	0013	0014	0015	0016	0017	0018	0019	001A	001B	001C	001D	001E	001F		
2-	0020	0021	11 0022	# 0023	\$	% 0025	& 0026	1 0027	0028) 0029	* 002A	+ 002B	9 002C	- 002D	• 002E	/ 002F		
3-	00030	1 0031	2	3 0033	4 0034	5 0035	6 0036	7 0037	8 0038	9 0039	003A	9 003B	<	= 003D	> 003E	? 003F		- 0-7F match ASCII
4-	@ 0040	A 0041	B 0042	C 0043	D ₀₀₄₄	E 0045	F 0046	G 0047	H 0048	I 0049	J 004A	К 004В		M 004D	N 004E	0 004F		
5-	P	Q 0051	R 0052	S 0053	T 0054	U 0055	V	W	X 0058	Y 0059	Z 005A	[005B	0050] 005D	∧ 005E	005F		
6-	0060	a 0061	b	C 0063	d 0064	e 0065	f	g 0067	h 0068	i 0069	j 0064	k) 006C	m	n 006E	0 006F		
7-	P _0070	q 0071	r 0072	S 0073	t 0074	u 0075	V 0076	W 0077	X 0078	y 0079	Z 007A	{ 007B	007C	} _007D	~ 007E	007F	_	J
8-	0080	0081	0082	0083	0084	0085	0086	0087	0088	0089	008A	008B	008C	008D	008E	008F		reserved
9-	0090	0091	0092	0093	0094	0095	0096	0097	0098	0099	009A	009B	009C	009D	009E	009F		(control characters)
A-	00A0	00A1	¢ 0042	£ 00A3	¤	¥ 0045	00 A6	§ 00A7	•• 00A8	© 00A9	<u>a</u> 00AA	≪ 00AB	00AC	- 00AD	R 00AE	- 00AF		ן
B-	0 0060	± 00B1	2 0062	3 0083	- 0084	$\mu_{_{00B5}}$	¶ ∞86	• 0087	د 0088	1 0089	0 00BA	≫ 0088		1/2 00BD	3⁄4 00BE	Ġ OOBF		
C-	À 0000	Á 00C1	Â 00C2	Ã 00C3	Ä 00C4	Å 00C5	Æ	Ç 00C7	È 00C8	É 00C9	Ê 00ca	Ë 00CB	Ì 00000	Í 00CD	Î 00ce	Ï DOCF		A0-FF differ, eg:
D-	Ð	Ñ 00D1	Ò	Ó 00D3	Ô 00D4	Õ .00D5	Ö	× 00D7	Ø	Ù	$\mathbf{\hat{U}}_{_{00DA}}$	Û 0008	Ü	Ý	Þ odde	B		 -1 "Western" -2 "East European"
E-	à 00E0	á 00E1	â 00E2	ã ooes	ä 00E4	å 00E5	æ 00E6	ç 00E7	è 00E8	é 00E9	ê 00EA	ë 00eb	Ì ODEC	Í 00ED	î 00EE	i ooef		-9 "Turkish
F-	ð 00F0	ñ 00F1	Ò 00F2	Ó 00F3	Ô 00F4	Õ 00F5	Ö 00F6	+ 00F7	Ø OOF8	ù 00F9	Ú 00FA	û 00FB	ü 00FC	ý oofd	þ	$\boldsymbol{\ddot{y}}_{_{\text{OOFF}}}$		

Windows Family (eg 1252 Latin)

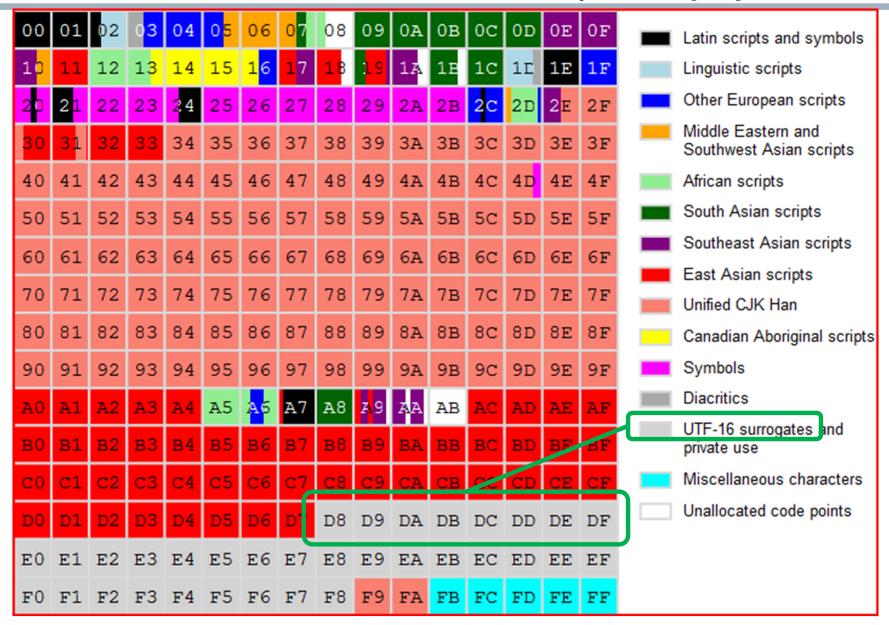
HTML 5 Standard

Name	Labels
The Encoding	
UTF-8	"unicode-1-1-utf-8"
	"utf-8"
	"utf8"
windows-1252	"ansi_x3.4-1968"
	"ascii"
	"cp1252"
	"cp819"
	"csisolatin1"
	"ibm819"
	"iso-8859-1"
	"iso-ir-100"
	"iso8859-1"
	"iso88591"
	"iso_8859-1"

Early Unicode and UTF-16

Computer Science and Engineering
The Ohio State University

□ Unicode started as 2¹⁶ code points


- The BMP of modern Unicode
- Bottom 256 code points match ISO-8859-1
- □ Simple 1:1 encoding (UTF-16)
 - Code point <--> 16-bit code unit (ie 2 bytes)
 - Simple, but doubles storage needed for ASCII
- □ Later, code points outside of BMP added
 - A pair of words (aka "surrogate pairs") carry 20bit payload split, 10 bits in each word
 - First: **1101 10**xx xxxx xxxx (xD800-DBFF)
 - Second: **1101 11**yy yyyy yyyy (xDC00-DFFF)
- Consequence: U+D800 to U+DFFF became reserved code points in Unicode
 - And now we are stuck with this legacy, even for UTF-8

Demo

Computer Science and Engineering
The Ohio State University

JavaScript uses UTF-16 let $x = " \{ 1f916 \} hi" // robot face + hi$ x.length //=> 4 (number of code units) x.charAt(0) //=> char from 1st code unit x.charAt(2) // surprise? [...x][2] // spread = linear time {...x} // spreads code units Ruby supports multiple encodings $x = " \{ 1f916 \} "$ x.length x.bytes.map { |b| b.to s(2) } x.encoding x.encode! Encoding::UTF 16 x.bytes.map { |b| b.to_s(16) }

Basic Multilingual Plane

UTF-16 and Endianness

- A multi-byte representation must distinguish between big & little endian
 - Example: 00 25 00 25 00 25
 - "%%%" if LE, "———" if BE
- One solution: Specify encoding in name
 UTF-16BE or UTF-16LE
- Another solution: require byte order mark (BOM) at the start of the file
 - U+FEFF (ZERO WIDTH NO BREAK SPACE)
 - There is no U+FFFE code point
 - So FE FF \rightarrow BigE, while FF FE \rightarrow LittleE
 - Not considered part of the text

- Should we add a BOM to the start of UTF-8 files too?
 - UTF-8 encoding of U+FEFF is EF BB BF
- □ Advantages:
 - Forms magic-number for UTF-8 encoding
- Disadvantages:
 - Not backwards-compatible to ASCII
 - Existing programs may no longer work
 - E.g., In Unix, shebang (#!, i.e. 23 21) at start of file is significant: file is a script #! /bin/bash

ZWJ: Zero Width Joiner

- Using U+FEFF as ZWNBSP deprecated
 - Reserved for BOM uses (at start of file)
- □ Alternative: U+200D ("zwidge")
- Joined characters may be rendered as a single glyph
 - Co-opted for use with emojis
- Example: 1 character?
 - U+1F3F4 U+200D U+2620
 - let $x = " \{ 1F3F4 \} \{ 200D \} \{ 2620 \} "$
 - WAVING BLACK FLAG, ZWJ, SKULL AND CROSSBONES

To Ponder

Computer Science and Engineering
The Ohio State University

- □ What is a "text" file? (vs "binary" file)
 - Given a file, how can you tell which it is?
- A JavaScript program reads in a 5MB file of ASCII text, storing it in the string f
 - How many characters are in f?
 - How much memory does f occupy?
- □ How many characters are in string s?

let s = ... // a JavaScript string

console.assert(s.length == 7) // true

- □ Which is better: UTF-8 or UTF-16?
- □ What's so scary about:

..%c0%af..

Summary

Computer Science and Engineering
The Ohio State University

Text vs binary

- In pre-historic times: most significant bit
- Now: data is data
- Unicode code points
 - Integers U+0000..U+10FFFF
 - BMP: Basic Multilingual Plane
- UTF-8
 - A variable-length, self-synchronizing encoding of unicode code points
 - Backwards compatible with ISO 8859-1, and hence with ASCII too