
Computer Science and Engineering College of Engineering The Ohio State University

Unicode and UTF-8

Lecture 33

A standard for the discrete
representation of written text

Computer Science and Engineering The Ohio State University

The Big Picture

’m ф €
好

U+2019

U+20ACU+0444
U+006D U+5975

E2 82 AC
E5 A5 BD

E2 80 99

D1 84
6D

Apostrophe
Latin M

Cyrillic ef Euro sign
Tei chou ten

glyphs

code
points

code
units

characters

code unit

Computer Science and Engineering The Ohio State University

The Big Picture

glyphs

code
points

code
units

’m ф €
好

U+2019

U+20ACU+0444
U+006D U+5975

E2 82 AC
E5 A5 BD

E2 80 99

D1 84
6D

Apostrophe
Latin M

Cyrillic ef Euro sign
Tei chou tencharacters

Computer Science and Engineering The Ohio State University

Glyphs vs Characters

glyphs A

Latin capital A
Greek capital alphacharacters Latin small E

e
e

e
e
e ee

Computer Science and Engineering The Ohio State University

Text: A Sequence of Glyphs
 Glyph: “An individual mark on a written

medium that contributes to the meaning
of what is written.”
 See foyer floor in main library

 One character can have different glyphs
 Example: Latin Small E could be e, e, e, e, e…

 One glyph can be different characters
 0 is both Digit Zero and (capital) Latin 0
 A is both (capital) Latin A and Greek Alpha

 One unit of text can consist of multiple
glyphs
 An accented letter (é) is two glyphs
 The ligature of f+i (fi) is two glyphs

Computer Science and Engineering The Ohio State University

Security Issue

 Visual homograph: Two different
characters that look the same
 Would you click here: www.paypаl.com ?

Computer Science and Engineering The Ohio State University

Security Issue
 Visual homograph: Two different

characters that look the same
 Would you click here: www.paypаl.com ?
 Oops! The second ‘a’ is actually CYRILLIC

SMALL LETTER A
 This site successfully registered in 2005

 Other examples: combining characters
 ñ = LATIN SMALL LETTER N WITH TILDE
 ñ = LATIN SMALL LETTER N + COMBINING

TILDE
 “Solution”
 Heuristics that warn users when languages

are mixed and homographs are possible

Computer Science and Engineering The Ohio State University

Unicode: Characters, Code Points

code
points U+2019

U+20ACU+0444
U+006D U+5975

Apostrophe
Latin M

Cyrillic ef Euro sign
Tei chou ten

glyphs
’m ф €

好

characters

code
units

E2 82 AC
E5 A5 BD

E2 80 99

D1 84
6D

Computer Science and Engineering The Ohio State University

Unicode Code Points
 Each character is assigned a unique code

point
 A code point is defined by an integer

value, and is given a name
 one hundred and nine (109, or 0x6d)
 LATIN SMALL LETTER M

 Convention: Write code points as U+hex
 Example: U+006D

 As of Sept '24, v16.0 (see unicode.org):
 Contains 154,998 code points

emoji-versions.html
 Covers 168 scripts (and counting…)

unicode.org/charts/

Computer Science and Engineering The Ohio State University

Example Recent Addition (v11)

Computer Science and Engineering The Ohio State University

Organization
 Code points are grouped into categories
 Basic Latin, Cyrillic, Arabic, Cherokee,

Currency, Mathematical Operators, …
 Unicode allows for 17 x 216 code points
 0 to 1,114,111 (i.e., > 1 million)
 U+0000 to U+10FFFF

 Each block of 216 code points is a plane
 U+nnnnnn, same green ==> same plane
 ~64,000 code points per plane

 Plane 0 is the basic multilingual plane
(BMP)
 Has (practically) everything you could need
 Convention: code points in BMP written

U+nnnn (ie 4 digits, leading 0's if needed)
 Others code points written without leading 0's

Computer Science and Engineering The Ohio State University

Basic Multilingual Plane

Computer Science and Engineering The Ohio State University

Supplemental Plane (plane 1)

Computer Science and Engineering The Ohio State University

UTF-8: Code Points & Octets

code
points U+2019

U+20ACU+0444
U+006D U+5975

glyphs
’m ф €

好

Apostrophe
Latin M

Cyrillic ef Euro sign
Tei chou tencharacters

code
units

E2 82 AC
E5 A5 BD

E2 80 99

D1 84
6D

Computer Science and Engineering The Ohio State University

UTF-8
 Encodes each code point (integer) as a

sequence of bytes (octets)
 Variable length
 Some code points require 1 octet
 Others require 2, 3, or 4

 Consequence: Can not infer number of
characters from size of file!

 No endian-ness: a sequence of octets
D0 BF D1 80 D0 B8 D0 B2 D0 B5 D1 82...

 Other encodings exist!
 Eg UTF-16 uses 2 bytes per code point

(more general term: code unit)

Computer Science and Engineering The Ohio State University

UTF-8 Encoding Recipe

 1-byte encodings
 First bit is 0
 Example: 0110 1101 (encodes U+006D)

 2-byte encodings
 First byte starts with 110…
 Second byte starts with 10…
 Example: 1101 0000 1011 1111
 Payload: 1101 0000 1011 1111

= 100 0011 1111
= 0x043F

 Code point: U+043F
i.e. п, Cyrillic small letter pe

Computer Science and Engineering The Ohio State University

UTF-8 Encoding Recipe
 Generalization: An encoding of length k:
 First byte starts with k 1’s, then a 0

 Example 1110 0110 ==> first byte of a 3-byte
encoding

 Subsequent k-1 bytes each start with 10
 Remaining bits are the payload

 Example: E2 82 AC
11100010 10000010 10101100

 Payload: 0x20AC (i.e., U+20AC, €)
 Consequence: Stream is self-

synchronizing
 Losing a byte affects only one character

Computer Science and Engineering The Ohio State University

UTF-8 Encoding Summary

(from wikipedia)

Computer Science and Engineering The Ohio State University

Your Turn

 For the following UTF-8 encoding, what
is the corresponding code point(s)?
 F0 A4 AD A2

 For the following Unicode code point,
what is its UTF-8 encoding?
 U+20AC

Computer Science and Engineering The Ohio State University

Security Issue
 Not all octet sequences are legal encodings
 “overlong” encodings are illegal
 example: C0 AF

= 1100 0000 1010 1111
= U+002F (encoding should be 2F)

 Classic security bug (IIS 2001)
 Should reject URL requests with “../..”

 Looked for 2E 2E 2F 2E 2E (in encoding)
 Accepted “..%c0%af..” (doesn’t contain x2F)

 2E 2E C0 AF 2E 2E is ok to allow through
 After accepting, server then decoded

 2E 2E C0 AF 2E 2E decoded into “../..”
 Moral: String is a sequence of code units
 But we care about code points

Computer Science and Engineering The Ohio State University

Other (Older) Encodings
 In the beginning…
 Character sets were small
 ASCII: only 128 characters (ie 27)
 1 byte/character, leading bit always 0

Computer Science and Engineering The Ohio State University

ASCII: 128 Codes

6D = Latin small m

Computer Science and Engineering The Ohio State University

Other (Older) Encodings
 In the beginning…
 Character sets were small
 ASCII: only 128 characters (ie 27)
 1 byte/character, leading bit always 0

 Globalization means more characters…
 But 1 byte/character seems fundamental

 Solutions:
 Use that leading bit!
 Text data now looks just like binary data
 256 characters

 Use more than 1 encoding!
 Must specify data + encoding used
 Each encoding gives 256 characters

Computer Science and Engineering The Ohio State University

ISO-8859 family (eg -1 Latin)

0-7F match ASCII

reserved
(control characters)

A0-FF differ, eg:
-1 "Western"
-2 "East European"
-9 "Turkish

Computer Science and Engineering The Ohio State University

Windows Family (eg 1252 Latin)

92 = apostrophe

Computer Science and Engineering The Ohio State University

HTML 5 Standard

Computer Science and Engineering The Ohio State University

Early Unicode and UTF-16
 Unicode started as 216 code points
 The BMP of modern Unicode
 Bottom 256 code points match ISO-8859-1

 Simple 1:1 encoding (UTF-16)
 Code point <--> 16-bit code unit (ie 2 bytes)
 Simple, but doubles storage needed for ASCII

 Later, code points outside of BMP added
 A pair of words (aka "surrogate pairs") carry 20-

bit payload split, 10 bits in each word
 First: 1101 10xx xxxx xxxx (xD800-DBFF)
 Second: 1101 11yy yyyy yyyy (xDC00-DFFF)

 Consequence: U+D800 to U+DFFF became
reserved code points in Unicode
 And now we are stuck with this legacy, even for

UTF-8

Computer Science and Engineering The Ohio State University

Demo
 JavaScript uses UTF-16

let x = "\u{1f916}hi" // robot face + hi
x.length //=> 4 (number of code units)
x.charAt(0) //=> char from 1st code unit
x.charAt(2) // surprise?
[...x][2] // spread = linear time
{...x} // spreads code units

 Ruby supports multiple encodings
x = "\u{1f916}"
x.length
x.bytes.map { |b| b.to_s(2) }
x.encoding
x.encode! Encoding::UTF_16
x.bytes.map { |b| b.to_s(16) }

Computer Science and Engineering The Ohio State University

Basic Multilingual Plane

Computer Science and Engineering The Ohio State University

UTF-16 and Endianness
 A multi-byte representation must

distinguish between big & little endian
 Example: 00 25 00 25 00 25
 "%%%" if LE, "─ ─ ─" if BE

 One solution: Specify encoding in name
 UTF-16BE or UTF-16LE

 Another solution: require byte order mark
(BOM) at the start of the file
 U+FEFF (ZERO WIDTH NO BREAK SPACE)
 There is no U+FFFE code point
 So FE FF BigE, while FF FE LittleE
 Not considered part of the text

Computer Science and Engineering The Ohio State University

BOM and UTF-8

 Should we add a BOM to the start of
UTF-8 files too?
 UTF-8 encoding of U+FEFF is EF BB BF

 Advantages:
 Forms magic-number for UTF-8 encoding

 Disadvantages:
 Not backwards-compatible to ASCII
 Existing programs may no longer work
 E.g., In Unix, shebang (#!, i.e. 23 21) at

start of file is significant: file is a script
#! /bin/bash

Computer Science and Engineering The Ohio State University

ZWJ: Zero Width Joiner

 Using U+FEFF as ZWNBSP deprecated
 Reserved for BOM uses (at start of file)

 Alternative: U+200D (“zwidge”)
 Joined characters may be rendered as

a single glyph
 Co-opted for use with emojis

 Example: 1 character?
 U+1F3F4 U+200D U+2620
let x = "\u{1F3F4}\u{200D}\u{2620}"
 WAVING BLACK FLAG, ZWJ, SKULL AND

CROSSBONES

Computer Science and Engineering The Ohio State University

To Ponder
 What is a “text” file? (vs “binary” file)
 Given a file, how can you tell which it is?

 A JavaScript program reads in a 5MB file
of ASCII text, storing it in the string f
 How many characters are in f?
 How much memory does f occupy?

 How many characters are in string s?
let s = ... // a JavaScript string
console.assert(s.length == 7) // true

 Which is better: UTF-8 or UTF-16?
 What’s so scary about:

..%c0%af..

Computer Science and Engineering The Ohio State University

Summary

 Text vs binary
 In pre-historic times: most significant bit
 Now: data is data

 Unicode code points
 Integers U+0000..U+10FFFF
 BMP: Basic Multilingual Plane

 UTF-8
 A variable-length, self-synchronizing

encoding of unicode code points
 Backwards compatible with ISO 8859-1,

and hence with ASCII too

