Security: Cryptography II

Comy

Lecture 38

g B The Ohio State Universi



Symmetric Key

For ciphers (so far): Knowing E is
enough to figure out D (its inverse)

B If you know how to encrypt, you can
decrypt too

B Known as a symmetric key cipher
Example: Caesar cipher
mIfE(M)=m+ 3, D(m) =m-3
Example: One-time pad

B Use same pad and same operation (xor)

Example: AES
B Use same key, reverse rounds and steps

Computer Science and Engineering B The Ohio State Universi



One-Way Functions

Computer Science and Engineering B The Ohio State University

For some functions, the inverse is hard

to calculate

B One direction (P>Q) is easy, but opposite
direction (Q—->P) is hard/expensive/slow

Intuition:

B Given a puzzle solution, easy to design a
puzzle with that solution (the “forward”
direction)

B Given the puzzle, hard to come up with
the solution (the “inverse” direction)




Example: Dominating Set

Computer

Hard direction: Find a dominating set
of size at most 6 in the following
graph...

A Map of the Town of Iceberg




Example: Dominating Set

Easy direction: Create a graph with a
dominating set of size 6 from this

forest...
r‘@‘o ;
./

H@

The Secret Solution




Example: Factoring

Computer Science and Engineering B The Ohio State University

Multiplying numbers is easy (i.e. fast)
B Multiplying 2 n-bit numbers takes n? steps

Factoring a number is hard (i.e. slow)

B To factor an n-bit number, need 2" steps
(approximately the number’s value)

Aside:

B Primality testing is fast (recall lab activity
in Software I and Fermat'’s Little Theorem)

B But this fast test doesn’t reveal the factors
of a composite number




Cryptographic Hash Functions

niversity

A hash function: Z - Zj

B Fvery message, regardless of its length, maps
to a number in the range 0..B -1

B Resu

B Good
smal

t called a digest (constant-length, 1gB)

hashes give uniform distribution:
diff in message = big diff in digest

Cryptographic hash func’s are one-way

B Given a digest, computationally infeasible to
find any m that hashes to it

B Collisions must still exist (B « |messages|), but
are infeasible to find for large enough B

B Digest = a fingerprint of m (small, fixed-size)



Fixed-Length Digests

Computer Science and Engineering B The Ohio State University

cleartext MDS5 digest
hello. world hash 22c3683b094136c3
' function 398391ae71b20f04
/
this is cleartext that /
anybody can easily
read without the key hash /[ bd18d50263601456
used by encryption. function / f22e3ff0d003bB6
It's also bigger than /
the box of text above.
This is some really /
long text that we always
mean to encrypt, and 128 bits

to keep these pearls
of wisdom out of the
reach of the bad guy.

We don't really know

how anybody could hash dd7ed8f8dacc48ee
ever break our rot13 function ac348bade78d33ee
encryption, but if the

NSA puts its mind to
it, perhaps they will
manage.

It's not an easy job
making up random
text for examples.




Crypto. Hash as Fingerprint

Computer Science and Engineering B The Ohio State University

Input Digest
cryptographic DFCD 3454 BBEA 788A 751A
Fox —> fu?]?:ilr(])n ™ 696C 24D9 7009 CA99 2D17
The red fox cryptographic 0086 46BE FETD CBE2 823C
{: Ll:llg] Iglsuzvj(;g > fu?]aci::)n -l ACC7 6CD1 90B1 EEGE 3AEC
The red _fox cryptographic p| FD8 7558 7851 4F32 DICS
Jtl;]r:r[))ls — fu?]?:ii?)n Fomil cent i oot st
The red fox cryptographic FCD3 7FDB 5AF2 C6FF 915F
Jtlfllrenf)lug —> fu?]?:ii?.)h [Sba61 conslTosn acar wris
The red_fg cryptographic
umps | hash p»| BACR D682 D588 4CT5 4BF4
{:he blu@e Tog o function 1799 7D88 BCF8 92B9 6A6C




Common Cryptographic Hashes

Co ty

MD5

B Flaws discovered: “cryptographically broken”
B Do not use!

SHA-1: deprecated

B Windows, Chrome, Firefox reject (2017)
B 160-bit digests (i.e. 40 hex digits)
Replaced by SHA-2 (still common)

B A family of 6 different hash functions

B Digest sizes: 224, 256, 384, or 512 bits

B Names: SHA-224, SHA-256, SHA-512, etc

Current state-of-the-art is SHA-3
B Entirely different algorithm
B Names: SHA3-224, SHA3-256, SHA3-512, etc




Utility of Crypto. Hashe

Computer Science and Engineering B The Ohio State University

Integrity verification (super-checksum)
B File download, check digest matches

Password protection
B Server stores the hash of user’s password

B Check entered password by computing its
hash and comparing hash to the stored value

B Benefit: Passwords are not stored (directly) in
the database! If server is compromised,
intruder finds hashes but not passwords

Problem:

B See md5decrypt.net/en/Sha256/
c023d5796452ad1d80263a05d11dc2a42b8c19¢c5d7c88c0e84ae3731b73a3d34




Role of Salt

Computer Science and Engineering B The Ohio State University

Danger:

B Intruder pre-computes hashes for many
(common) passwords: aka a rainbow table

B Scan stolen hashes for matches

Solution: salt

B Server prepends text to password before
hashing

B Text must be unigue to user

B Text does not need to be secret
O Ok: Deterministic value based on user name
O Better: Random value, stored in the table

Protects the fingerprint, by making it not
mass pre-computable




One-Way Function with Trapdoor

Com

Function appears to be one-way

B In reality, however, the inverse is easy if
one knows a secret (the “trapdoor”)

[here are two very different functions:
B The one-way-seeming function, E
B The trapdoor for its inverse, D

Knowing E is not enough to infer D
Creates an asymmetry:

B Alice knows E
B Bob (and only Bob) knows D




Asymmetry: Alice vs Bob

'
n Alice
Hello

Bob! » Encrypt «—— F

ering B The Ohio State Universi



Public-

H But

Key Encryptlon

Algorithms for E and D known by aII

parameterized by matched keys

Asymmetry

B Everyone knows key for Bob’s E (public)
B Only Bob knows key for Bob’s D (private)

Impo
B Eac
B No

Anyone can encrypt messages for Bob
Only Bob can decrypt these messages

tant consequences
N agent needs only 1 public key

Dre-existing shared secret needed



Public and Private Keys

Com

<.
n Alice
Hello .

Bob! > Encrypt «—— (0




RSA

E and D are actually the same function

m* mod n

B Parameterized by pair (k,n), i.e. the key
Private key: (d,n)

B D(m) =m%modn

Public key: (e, n)

B F(m)=mfmodn

Choice of e & d is based on factoring

B Choose 2 large prime numbers, p and g
B Calculate their product, n = pg

B Pick any d relatively prime with (p-1)(g-1)
B Findanes.t.ed =1 mod (p-1)(g-1)

Computer Science and Engineering B The Ohio State Universi



Digital Signature

Usual direction for encryption:
D(E(m)) = (me)? = mé = m, mod n
One-to-one, so backwards works too!
E(D(m)) = (m9)¢ = m% = m, mod n
Consider:
B Bob “encrypts” m using his private key, d
B Bob sends both m and D(m)

B Anyone can undo the “encrypted” part using
Bob’s public key, e

B Result will be m

D(m) serves as a digital signature of m
B Only Bob could have created this signature
B Use: non-repudiation

Computer Science and Engineering B The Ohio State Universi



Performance Considerations

Com

Symmetric key algorithms are faster
than public key algorithms

Optimization for encryption (RSA)
B Create a fresh symmetric key, k

B Use symmetric algorithm to encrypt m
B Use recipient’s public key to encrypt k
Optimization for digital signatures

B Calculate the digest for m (always short)
B Use sender’s private key to encrypt digest




Take Home Message

Computer Science and Engineering B The Ohio State University

Don't try to roll your own
crypto/security implementation

Use (trusted) libraries

Recognize role and importance of (eqg):
B Initialization vector

B Cryptographic hash/digest

B Salt

B Private key vs public key




Summary

One-way function
B Cryptographic hash creates a fingerprint

Public key encryption

— MatChing kGYS: kprivatel kpublic

B Anyone can use public key to encrypt
B Only holder of private key can decrypt

B Use private key to create a digital
signature




