
Computer Science and Engineering  College of Engineering  The Ohio State University

Security: Cryptography II

Lecture 38

Computer Science and Engineering  The Ohio State University

Symmetric Key

 For ciphers (so far): Knowing E is
enough to figure out D (its inverse)
 If you know how to encrypt, you can

decrypt too
 Known as a symmetric key cipher

 Example: Caesar cipher
 If E(m) = m + 3, D(m) = m – 3

 Example: One-time pad
 Use same pad and same operation (xor)

 Example: AES
 Use same key, reverse rounds and steps

Computer Science and Engineering  The Ohio State University

One-Way Functions

 For some functions, the inverse is hard
to calculate
 One direction (PQ) is easy, but opposite

direction (QP) is hard/expensive/slow
 Intuition:
 Given a puzzle solution, easy to design a

puzzle with that solution (the “forward”
direction)

 Given the puzzle, hard to come up with
the solution (the “inverse” direction)

Computer Science and Engineering  The Ohio State University

Example: Dominating Set

 Hard direction: Find a dominating set
of size at most 6 in the following
graph…

Computer Science and Engineering  The Ohio State University

Example: Dominating Set

 Easy direction: Create a graph with a
dominating set of size 6 from this
forest…

Computer Science and Engineering  The Ohio State University

Example: Factoring

 Multiplying numbers is easy (i.e. fast)
 Multiplying 2 n-bit numbers takes n2 steps

 Factoring a number is hard (i.e. slow)
 To factor an n-bit number, need 2n steps

(approximately the number’s value)
 Aside:
 Primality testing is fast (recall lab activity

in Software I and Fermat’s Little Theorem)
 But this fast test doesn’t reveal the factors

of a composite number

Computer Science and Engineering  The Ohio State University

Cryptographic Hash Functions

 A hash function:
 Every message, regardless of its length, maps

to a number in the range
 Result called a digest (constant-length,)
 Good hashes give uniform distribution:

small diff in message  big diff in digest
 Cryptographic hash func’s are one-way
 Given a digest, computationally infeasible to

find any m that hashes to it
 Collisions must still exist (), but

are infeasible to find for large enough
 Digest = a fingerprint of m (small, fixed-size)

Computer Science and Engineering  The Ohio State University

Fixed-Length Digests

Computer Science and Engineering  The Ohio State University

Crypto. Hash as Fingerprint

Computer Science and Engineering  The Ohio State University

Common Cryptographic Hashes
 MD5
 Flaws discovered: “cryptographically broken”
 Do not use!

 SHA-1: deprecated
 Windows, Chrome, Firefox reject (2017)
 160-bit digests (i.e. 40 hex digits)

 Replaced by SHA-2 (still common)
 A family of 6 different hash functions
 Digest sizes: 224, 256, 384, or 512 bits
 Names: SHA-224, SHA-256, SHA-512, etc

 Current state-of-the-art is SHA-3
 Entirely different algorithm
 Names: SHA3-224, SHA3-256, SHA3-512, etc

Computer Science and Engineering  The Ohio State University

Utility of Crypto. Hashes
 Integrity verification (super-checksum)
 File download, check digest matches

 Password protection
 Server stores the hash of user’s password
 Check entered password by computing its

hash and comparing hash to the stored value
 Benefit: Passwords are not stored (directly) in

the database! If server is compromised,
intruder finds hashes but not passwords

 Problem:
 See md5decrypt.net/en/Sha256/
c023d5796452ad1d80263a05d11dc2a42b8c19c5d7c88c0e84ae3731b73a3d34

Computer Science and Engineering  The Ohio State University

Role of Salt
 Danger:
 Intruder pre-computes hashes for many

(common) passwords: aka a rainbow table
 Scan stolen hashes for matches

 Solution: salt
 Server prepends text to password before

hashing
 Text must be unique to user
 Text does not need to be secret

 Ok: Deterministic value based on user name
 Better: Random value, stored in the table

 Protects the fingerprint, by making it not
mass pre-computable

Computer Science and Engineering  The Ohio State University

One-Way Function with Trapdoor

 Function appears to be one-way
 In reality, however, the inverse is easy if

one knows a secret (the “trapdoor”)
 There are two very different functions:
 The one-way-seeming function, E
 The trapdoor for its inverse, D

 Knowing E is not enough to infer D
 Creates an asymmetry:
 Alice knows E
 Bob (and only Bob) knows D

Computer Science and Engineering  The Ohio State University

Asymmetry: Alice vs Bob

E

D

Computer Science and Engineering  The Ohio State University

Public-Key Encryption

 Algorithms for E and D known by all
 But parameterized by matched keys

 Asymmetry
 Everyone knows key for Bob’s E (public)
 Only Bob knows key for Bob’s D (private)

 Anyone can encrypt messages for Bob
 Only Bob can decrypt these messages
 Important consequences
 Each agent needs only 1 public key
 No pre-existing shared secret needed

Computer Science and Engineering  The Ohio State University

Public and Private Keys

Computer Science and Engineering  The Ohio State University

RSA
 E and D are actually the same function

 Parameterized by pair , i.e. the key
 Private key:


 Public key:


 Choice of e & d is based on factoring
 Choose 2 large prime numbers, p and q
 Calculate their product, n = pq
 Pick any d relatively prime with (p-1)(q-1)
 Find an e s.t. ed = 1 mod (p-1)(q-1)

Computer Science and Engineering  The Ohio State University

Digital Signature
 Usual direction for encryption:

D(E(m)) = (me)d = med = m, mod n
 One-to-one, so backwards works too!

E(D(m)) = (md)e = mde = m, mod n
 Consider:
 Bob “encrypts” m using his private key, d
 Bob sends both m and D(m)
 Anyone can undo the “encrypted” part using

Bob’s public key, e
 Result will be m

 D(m) serves as a digital signature of m
 Only Bob could have created this signature
 Use: non-repudiation

Computer Science and Engineering  The Ohio State University

Performance Considerations

 Symmetric key algorithms are faster
than public key algorithms

 Optimization for encryption (RSA)
 Create a fresh symmetric key, k
 Use symmetric algorithm to encrypt m
 Use recipient’s public key to encrypt k

 Optimization for digital signatures
 Calculate the digest for m (always short)
 Use sender’s private key to encrypt digest

Computer Science and Engineering  The Ohio State University

Take Home Message

 Don’t try to roll your own
crypto/security implementation

 Use (trusted) libraries
 Recognize role and importance of (eg):
 Initialization vector
 Cryptographic hash/digest
 Salt
 Private key vs public key

Computer Science and Engineering  The Ohio State University

Summary

 One-way function
 Cryptographic hash creates a fingerprint

 Public key encryption
 Matching keys: kprivate, kpublic
 Anyone can use public key to encrypt
 Only holder of private key can decrypt
 Use private key to create a digital

signature

