Security: Cryptography II

Computer Science and Engineering
College of Engineering
The Ohio State University

Lecture 38

Symmetric Key

- For ciphers (so far): Knowing E is enough to figure out D (its inverse)
 - If you know how to encrypt, you can decrypt too
 - Known as a symmetric key cipher
- Example: Caesar cipher
 - If E(m) = m + 3, D(m) = m 3
- Example: One-time pad
 - Use same pad and same operation (xor)
- Example: AES
 - Use same key, reverse rounds and steps

One-Way Functions

- For some functions, the inverse is hard to calculate
 - One direction $(P \rightarrow Q)$ is easy, but opposite direction $(Q \rightarrow P)$ is hard/expensive/slow
- □ Intuition:
 - Given a puzzle solution, easy to design a puzzle with that solution (the "forward" direction)
 - Given the puzzle, hard to come up with the solution (the "inverse" direction)

Example: Dominating Set

Computer Science and Engineering
The Ohio State University

Hard direction: Find a dominating set of size at most 6 in the following

graph...

Example: Dominating Set

Computer Science and Engineering
The Ohio State University

Easy direction: Create a graph with a dominating set of size 6 from this forest...

Example: Factoring

- Multiplying numbers is easy (*i.e.* fast)
 - Multiplying 2 n-bit numbers takes n² steps
- □ Factoring a number is hard (*i.e.* slow)
 - To factor an *n*-bit number, need 2ⁿ steps (approximately the number's value)
- □ Aside:
 - Primality testing is fast (recall lab activity in Software I and Fermat's Little Theorem)
 - But this fast test doesn't reveal the *factors* of a composite number

Cryptographic Hash Functions

Computer Science and Engineering
The Ohio State University

$\Box A hash function: \mathbb{Z} \to \mathbb{Z}_B$

- Every message, regardless of its length, maps to a number in the range 0..B 1
- Result called a *digest* (constant-length, lg B)
- Good hashes give uniform distribution: small diff in message \rightarrow big diff in digest

Cryptographic hash func's are one-way

- Given a digest, computationally infeasible to find any m that hashes to it
- Collisions must still exist ($B \ll |\text{messages}|$), but are infeasible to find for large enough B
- Digest = a *fingerprint* of m (small, fixed-size)

Fixed-Length Digests

Crypto. Hash as Fingerprint

Common Cryptographic Hashes

Computer Science and Engineering
The Ohio State University

D MD5

- Flaws discovered: "cryptographically broken"
- Do not use!
- □ SHA-1: deprecated
 - Windows, Chrome, Firefox reject (2017)
 - 160-bit digests (*i.e.* 40 hex digits)
- Replaced by SHA-2 (still common)
 - A family of 6 different hash functions
 - Digest sizes: 224, 256, 384, or 512 bits
 - Names: SHA-224, SHA-256, SHA-512, etc
- Current state-of-the-art is SHA-3
 - Entirely different algorithm
 - Names: SHA3-224, SHA3-256, SHA3-512, etc

Utility of Crypto. Hashes

Computer Science and Engineering
The Ohio State University

- Integrity verification (super-checksum)
 - File download, check digest matches
- Password protection
 - Server stores the hash of user's password
 - Check entered password by computing its hash and comparing hash to the stored value
 - Benefit: Passwords are not stored (directly) in the database! If server is compromised, intruder finds hashes but not passwords

Problem:

See <u>md5decrypt.net/en/Sha256/</u> c023d5796452ad1d80263a05d11dc2a42b8c19c5d7c88c0e84ae3731b73a3d34

Role of Salt

Computer Science and Engineering
The Ohio State University

Danger:

- Intruder pre-computes hashes for many (common) passwords: aka a rainbow table
- Scan stolen hashes for matches
- □ Solution: *salt*
 - Server prepends text to password before hashing
 - Text must be unique to user
 - Text does not need to be secret
 - □ Ok: Deterministic value based on user name
 - Better: Random value, stored in the table
- Protects the fingerprint, by making it not mass pre-computable

One-Way Function with Trapdoor

- □ Function *appears* to be one-way
 - In reality, however, the inverse is easy if one knows a secret (the "trapdoor")
- □ There are two very different functions:
 - The one-way-seeming function, E
 - The trapdoor for its inverse, D
- □ Knowing E is *not enough* to infer D
- Creates an asymmetry:
 - Alice knows E
 - Bob (and only Bob) knows D

Asymmetry: Alice vs Bob

Public-Key Encryption

- Algorithms for E and D known by all
 - But parameterized by matched keys
- Asymmetry
 - Everyone knows key for Bob's E (public)
 - Only Bob knows key for Bob's D (private)
- Anyone can encrypt messages for Bob
- Only Bob can decrypt these messages
- Important consequences
 - Each agent needs only 1 public key
 - No pre-existing shared secret needed

Public and Private Keys

□ E and D are actually the same function $m^k \mod n$

- Parameterized by pair (k, n), i.e. the key
- \Box Private key: (d, n)
 - $\square D(m) = m^d \mod n$
- **D** Public key: (e, n)
 - $E(m) = m^e \mod n$
- □ Choice of *e* & *d* is based on factoring
 - Choose 2 large prime numbers, p and q
 - Calculate their product, n = pq
 - Pick any d relatively prime with (p-1)(q-1)
 - Find an e s.t. ed = 1 mod (p-1)(q-1)

Digital Signature

Computer Science and Engineering
The Ohio State University

□ Usual direction for encryption: $D(E(m)) = (m^e)^d = m^{ed} = m, \mod n$

□ One-to-one, so backwards works too! $E(D(m)) = (m^d)^e = m^{de} = m, \mod n$

Consider:

- Bob "encrypts" m using his private key, d
- Bob sends **both** *m* and *D(m)*
- Anyone can undo the "encrypted" part using Bob's **public** key, e
- Result will be m
- \Box D(m) serves as a digital **signature** of *m*
 - Only Bob could have created this signature
 - Use: non-repudiation

Performance Considerations

- Symmetric key algorithms are faster than public key algorithms
- Optimization for encryption (RSA)
 - Create a fresh symmetric key, k
 - Use symmetric algorithm to encrypt m
 - Use recipient's public key to encrypt k
- Optimization for digital signatures
 - Calculate the digest for m (always short)
 - Use sender's private key to encrypt digest

Take Home Message

- Don't try to roll your own crypto/security implementation
- Use (trusted) libraries
- Recognize role and importance of (eg):
 - Initialization vector
 - Cryptographic hash/digest
 - Salt
 - Private key vs public key

Summary

Computer Science and Engineering
The Ohio State University

One-way function

- Cryptographic hash creates a fingerprint
- Public key encryption
 - Matching keys: k_{private}, k_{public}
 - Anyone can use public key to encrypt
 - Only holder of private key can decrypt
 - Use private key to create a digital signature